COMPLEXITIES OF THE INTERACTION OF Ni^{II}, Pd^{II} AND Pt^{II} PYRROLE-IMINE CHELATES WITH HUMAN SERUM ALBUMIN

Sheldon Sookai^a, and Orde Q. Munro^{a,b}

^aSchool of Chemistry, University of the Witwatersrand, 1 Jan Smuts Avenue, Johannesburg, PO WITS 2050, South Africa ^bSchool of Chemistry, University of Leeds, Woodhouse Lane, LS2 9JT, Leeds, UK

Human serum albumin (HSA) efficiently transports drugs in vivo: most are organic.

Here, HSA binding affinity and site specificity are shown to depend on the identity of the d⁸ metal ion in Ni^{II}, Pd^{II} and Pt^{II} chelates of the bis(pyrrole-imine) ligand H₂PrPyrr [1]. Fluorescence quenching data for native and probe-bound HSA showed sites close to Trp-214 (subdomain IIA) are targeted. The Stern-Volmer constants, K_{SV} , ranged from 10⁴ M⁻¹ to 10⁵ M⁻¹ while the affinity constants, K_a , ranged from ~3.5 × 10³ M⁻¹ to ~1 × 10⁶ M⁻¹ at 37 °C, following the order Pd(PrPyrr) > Pt(PrPyrr) >

 $Ni(PrPyrr) > H_2PrPyrr$. Ligand uptake is enthalpically driven, hinging mainly on London dispersion forces. Induced CD spectra for the protein-bound ligands could be simulated by hybrid QM:MM TD-DFT methods, proving that the metal chelates neither decompose nor demetallate after uptake by HSA. Transport and delivery of the metal chelates by HSA *in vivo* could therefore be feasible.

^[1] Sookai, Sheldon, and Orde Q. Munro. "Complexities of the Interaction of Ni^{II}, Pd^{II} and Pt^{II} Pyrrole-Imine Chelates with Human Serum Albumin." *ChemistryEurope*, June 2023, p. e202300012. *DOI.org (Crossref)*, https://doi.org/10.1002/ceur.202300012.