FUNCTIONALIZATION OF MOLYBDENUM BLUE POLYOXOMETALATES WITH AMINO ACIDS AND PEPTIDES

Haiyang Guo, De-Liang Long, and Leroy Cronin
School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK

Polyoxymetalates (POMs) are metal-oxygen clusters with diverse properties and structures. Molybdenum Blue (MB) is a subgroup of polyoxometalates of the largest known molecular structures with up to 368 Mo atoms contained in a single cluster. Since their crystal structures were first unveiled in the 1990's [1], major interests focused on the assembly and characterization of MB-organic hybrids with organic guests via supramolecular interactions. We recently reported a series of work on covalent modification of MBs with amino acids and peptides [2-5]. In this contribution, we demonstrate a workflow that can be tracked manually or by a robot and use it for the discovery of new MBs that are composed of various types of amino acid ligands. In a systematic search of reaction conditions in a fixed range, we identified a number of the $\left\{\mathrm{Mo}_{154}\right\}$ MB clusters with different crystal structures forming 1-D arrays or 2-D sheets (Figure 1). Detailed experimental designs with robotic control and data illustrations are present.

Figure 1. Left: 1-D array of $\left\{\mathrm{Mo}_{154}\right\}$ MB clusters observed in a new phase of MB-amino acid hybrid; Right: Representative packing diagram indicates 2-D layer structures of $\left\{\mathrm{Mo}_{154}\right\}$ clusters on crystallographic ac plane in another new phase. The dual arrows indicate the places of Mo-O-Mo bridges between $\left\{\mathrm{Mo}_{154}\right\}$ wheels.
[1] Muller, A.; Meyer, J.; Krickemeyer, E.; Diemann, E., Angew. Chem. Int. Ed., 1995, 35, 1206.
[2] Xuan, W.; R. Pow, R.; Long, D.-L.; Cronin, L., Angew. Chem. Int. Ed., 2017, 56, 9727.
[3] Xuan, W.; R. Pow, R.; Zheng, Q.; Watfa, N.; Long, D.-L.; Cronin, L., Angew. Chem. Int. Ed., 2019, 58, 10867.
[4] She, S.; Xuan,W.; Bell, N.; Pow, R.; Ribo, E. G.; Sinclair, Z.; Long, D.-L.; Cronin, L., Chem. Sci, 2021, 12, 2427.
[5] Long, D.-L.; Cronin, L., Adv. Inorg. Chem., 2021, 78, 227.

