PHOTOSYNTHETIC WATER OXIDATION: NEW INSIGHTS FROM X-RAY SPECTROSCOPY

Maria Drosou,^a Maria Chrysina,^b Serena DeBeer,^b and Dimitrios A. Pantazis^a

 ^a Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
^b Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany

Nature's process for the conversion of solar to chemical energy begins in Photosystem II (PSII) with the four-electron water oxidation to molecular oxygen, catalyzed by the oxygen evolving complex (OEC). The inorganic core Mn_4CaO_5 goes through four sequential light-driven oxidation reactions, involving states S₀-S₄, and molecular oxygen is evolved during the $S_3 \rightarrow [S_4] \rightarrow S_0$ transition. Commonly accepted formal oxidation states of the four Mn ions are $Mn^{III}_{3}Mn^{IV}$, $Mn^{III}_{2}Mn^{IV}_{2}$, and $Mn^{III}Mn^{IV}_{3}$ for the S_0 , S_1 and S_2 states, respectively, suggesting Mn-based oxidation in each S-state transition. However, the electronic structure of the S_3 state remains contested [1]. Spectroscopic studies suggest Mn-based [2] oxidation during the $S_2 \rightarrow S_3$ transition leading to the formation of an oxo-hydroxo isomer, whereas crystallographic studies suggest ligand-based oxidation resulting in O–O bond formation [3]. Herein, Mn K_{α} high energy resolution fluorescence detected (HERFD) X-ray absorption spectra (XAS) of S₀-S₃ states are presented in combination with quantum chemistry simulations. Our results allow for the first time to probe each state in the catalytic sequence based on the pre-edge region and demonstrate Mn-based oxidation in the $S_2 \rightarrow S_3$ transition. These results point to specific O-O bond formation pathways in natural photosynthesis and have implications for the design of synthetic systems.

^[1] D. A. Pantazis, *Inorganics* 2019, 7, 55.

^[2] N. Cox, M. Retegan, F. Neese, D. A. Pantazis, A. Boussac, W. Lubitz, Science 2014, 345, 804-808.

^[3] M. Suga, et al., Science 2019, 366, 334-338.