HETEROBIMETALLIC Ru(II)-Ni(II) COMPLEXES AS PROMISING CATALYSTS FOR COUPLING MECHANISTICALLY INCOMPATIBLE CATALYTIC REACTIONS: ROMP AND ETHYLENE OLIGOMERIZATION

Gustavo H. C. Masson^a, Bruna P. Nicola^b, Douglas H. N. Santos^a, Katia B. Gusmão^b, and <u>Valdemiro P. Carvalho-Jr</u>^a

^a Department of Chemistry and Biochemistry, São Paulo State University (UNESP), Presidente Prudente, Brazil ^bInstitute of Chemistry, Federal University of Rio Grande do Sul (UFGRS), Porto Alegre, Brazil

Late transition metal complexes have been used to catalyze many reactions. Among them, complexes based on Ni^{II} or Ru^{II} have attracted much attention. Ni^{II} shows high activity in catalysis, mainly in ethylene polymerization and oligomerization due the easily activation of olefins, besides to act as a Lewis acid in the presence of olefins. On the other hand, Ru^{II} can be coordinated to a great number of ligands, what must change its behavior in catalysis. Due its good π -donnor effect, this metal is a good alternative for Ring-Openning Methathesis Polymerization (ROMP). The use of heterobimetallic complexes as homogeneous catalysts aims to expand the catalytic scope, besides increases their reactivity via an electronic or mechanistical synergism [1]. In this work, we reported the synthesis, characterization, and catalytic activity of Ru^{II}-Ni^{II} heterobimetallic complexes to act in two mechanisms: ethylene oligomerization and ROMP. Thus, four new heterobimetallic complexes [Ph(PPh₃)Ni(N,O)pip-Ru(pcymene)Cl₂] [Ph(PPh₃)Ni(N,O-tert-butyl)pip-Ru(*p*-cymene)Cl₂] (1), (2),[Ph(PPh₃)Ni(N,O)py-Ru(p-cymene)Cl₂] (3), and [Ph(PPh₃)Ni(N,O-tert-butyl)py-Ru(pcymene)Cl₂] (4) were obtained by the reaction of the appropriated ruthenium precursor, [(Ph)Ni(PPh₃)₂Cl], and the desired aldehyde in an 1:1:1 ratio. The complexes were fully characterized by spectroscopy techniques as FTIR, UV-Vis, and ¹H and ${}^{31}P{}^{1}H$, besides cyclic voltammetry (CV). All bimetallic species showed an irreversible process assigned to the Ni^{II/III} redox pair, and reversible processes related to the Ru^{II/III} pair. A shift on oxidation potential in the Ru fragment was observed as compared to the Ru monometallic species (precursor) and it could be attributed to a synergic effect between Ru-Ni. The complex 2 (Ru fragment) was able to polymerize norbornene (NBE) reaching 80% in 60 minutes of conversion using with [NBE]/[Ru] = 5000 and [EDA]/[Ru] = 10 in chloroform at 50° C, while monometallic Ru polymerized NBE with 40% conversion using the same conditions [2]. The complex 2 (Ni fragment) oligomerized ethylene using ethylaluminium sesquichloride (EASC) in a molar ratio Al/[Ni] of 2100, toluene as solvent, 220 psi of ethylene, and 25° C, reaching a turnover frequency about 150 s⁻¹. The major part of products was C4 chains, with lower amount of C6 (around 25% related to the C4).

^[1] MATA, José A.; HAHN, F. Ekkehardt; PERIS, Eduardo. Heterometallic complexes, tandem catalysis and catalytic cooperativity. Chemical Science, v. 5, n. 5, p. 1723-1732, 2014.

^[2] MASSON, Gustavo HC et al. Ruthenium-nickel heterobimetallic complex as a bifunctional catalyst for ROMP of norbornene and ethylene polymerization. New Journal of Chemistry, v. 45, n. 26, p. 11466-11473, 2021.