
HOMOLEPTIC COMPLEXES OF BIS(4-CARBOXYLPYRAZOL-1-YL)ACETIC ACID: A NEW BUILDING UNIT FOR MOFs

Wintana Tzegai^a, <u>Polina Klypina</u>^a, Michaela Reil^a, Martin Fischer^b, Martin Hartmann^b and Nicolai Burzlaff^a

^aDepartment of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg ^bDepartment of Chemical and Biological Engineering (CBI),

Friedrich-Alexander-Universität Erlangen-Nürnberg

Recently, we reported on the novel bis(4-carboxylpyrazol-1-yl)acetic acid (H_3 bcpza) ligand, in which the additional peripheral carboxylic acid functionalities on the pyrazoles improve the water solubility of corresponding complexes.[1] In this regard, several divalent, homoleptic transition metal complexes [$M(L)_2$] were now synthesized and the respective molecular structures were resolved by single crystal X-ray structure determination. Apparently, in some cases these homoleptic complexes [$M(L)_2$] are potential building units for new metal-organic frameworks (MOFs) resulting in microporous MOFs of the composition [M_3 (bcpza)₂]_n x 12 H_2O .[2] Single crystal analysis showed that highly regular MOF structure is built up from the homoleptic units {M(bcpza)₂} and paddle-wheel moieties { M_2 (CO_2)₄}. The stability of the [M_3 (bcpza)₂]_n MOF at elevated temperature and humidity was further studied by powder XRD, TGA and BET analyses.

^[1] W. Tzegai, M. Reil, N. Burzlaff, Dalton Trans. 2022, 51, 6839.

^[2] W. Tzegai, S. Hauk, M. Reil, M. Fischer, M. Hartman, N. Burzlaff, to be submitted.