EASY-AXIS MAGNETIC ANISOTROPY IN TETRAGONALLY ELONGATED COBALT(II) COMPLEXES

Romana Mičová^a, <u>Cyril Rajnák^a</u>, Ján Titiš^a, Alina Bieńko^b, Ján Moncol^c, Erika Samol'ová^d and Roman Boča^a

^aDepartment of Chemistry, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia

^bFaculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw, Poland

^cInstitute of Inorganic Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia

^dInstitute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic

Zero-field splitting (zfs) is an important phenomenon confirmed by a number of experimental techniques: (i) magnetometry, (ii) susceptometry, (iii) far-infrared spectroscopy and its variations in the magnetic field (FIRMS, FDMRS), (iv) electron paramagnetic resonance and its variants (high-field/high-frequency electron magnetic resonance), (v) magnetic circular dichroism, (vi) inelastic neutron scattering, and (vii) low-temperature calorimetry [1, 2]. Two hexacoordinate Co(II) complexes $[Co(hfac)_2(etpy)_2]$ (1) and $[Co(hfac)_2(bzpyCl)_2]$ (2) were synthesized, spectrally and structurally characterized [3]. The $\{CoO_4N_2\}$ chromophore adopts a geometry of the elongated tetragonal bipyramid with small o-rhombic component. This less common arrangement causes that the magnetic data need be analysed using the Griffith-Figgis model, instead of the commonly used spin-Hamiltonian with zero-field splitting parameters D and E. In the case of the elongated bipyramid for d^7 complexes, the source of the magnetic anisotropy of an easy-axis type is the axial crystal field splitting Δ_{ax} . Both complexes under study display a field supported slow magnetic relaxation. For 1 the relaxation time at T = 2.0 K is $\tau_{\rm HF} = 20$ and 2 ms at the applied field $B_{\rm DC} = 0.15$ and 0.35 T, respectively. The slow magnetic relaxation is governed by the Raman-like relaxation process with the temperature coefficient $m \sim 5$. For 2 at T = 2.0 K and $B_{DC} =$ 0.1 T the relaxation time is $\tau_{\rm HF} = 6$ ms.

Acknowledgements: Slovak grant agencies (APVV 19-0087, VEGA 1/0086/21 and VEGA 1/0191/22) are acknowledged for the financial support.

^[1] R. Boča, Coord. Chem. Rev., 2004, 248, 757-815.

^[2] A. N. Bone, C. N. Widener, D. H. Moseley, Z. Liu, Z. Lu, Y. Cheng, L. Daemen, M. Ozerov, J. Telser, K. Thirunavukkuarasu, D. Smirnov, S. M. Greer, S. Hill, J. Krzystek, K. Holldack, A. Aliabadi, A. Schnegg, K. R. Dunbar, Z.-L. Xue, Chem. Eur. J. 2021, 27, 11110-11125.

^[3] R. Mičová, C. Rajnák, J. Titiš, A. Bieńko, J. Moncol', E. Samol'ová, R. Boča, Dalton Trans., submitted 2023.