
COPPER-DOPED NICKEL OXYHYDROXIDE FOR EFFICIENT ELECTROCATALYTIC ETHANOL OXIDATION

Huining Wang, Lijuan Zhang

Laboratory of Advanced Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, China

The electrochemical oxidation of alcohols is a major focus of energy and chemical conversion efforts, which exhibited potential applications ranging from fuel cells to biomass utilization and fine chemical synthesis [1]. Ethanol (CH₃CH₂OH), as a biomass liquid fuel, has been regarded as one of the most promising renewable energy carriers and important green chemicals. Rational design of low-cost and efficient electrocatalysts for ethanol oxidation reaction (EOR) is imperative for electrocatalytic ethanol fuel cells. Ni can allow to activate water molecules and provide sites for OH adsorption (H₂O \rightarrow OH_{ads} + H⁺ + e⁻), while the presence of OH_{ads} is beneficial for the complete oxidation of CO intermediates to avoid catalyst poisoning [2]. Therefore, Nibased materials have been approached as a type promising non-noble metal based EOR electrocatalysts. In this work, we developed a copper-doped nickel oxyhydroxide (Cudoped NiOOH) catalyst as an efficient electrocatalyst for selective ethanol oxidation to acetate via in situ electrochemical reconstruction of a NiCu alloy. The introduction of Cu dopants increases the specific surface area and more defect sites, as well as forms high-valence Ni sites. The Cu-doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm⁻² at 1.72 V versus reversible hydrogen electrode, high Faradic efficiencies for acetate production (> 98%), and excellent electrochemical stability. Our work suggests an attractive route of designing non-noble metal based electrocatalysts for ethanol oxidation.

^[1] A. Badalyan, S. S. Stahl, Nature, 2016, 535, 406-410.

^[2] J. E. Sulaiman, S. Q. Zhu, Z. L. Xing, Q. W. Chang, M. H. Shao, ACS Catal., 2017, 7, 5134–5141.