METAL COOPERATIVITY FOR VISIBLE-LIGHT DRIVEN CO₂ REDUCTION WITH HOMOBIMETALLIC MOLECULAR CATALYSTS

Jaya Bharti^a, Lingjing Chen^b, Gui Chen^b, Tai-Chu Lau^{b,c} and Marc Robert^a

^a Laboratoire d'Electrochimie Moléculaire, Université Paris Cité, CNRS, F-75006 Paris,

France

jaya.bharti@u-paris.fr

^b School of Environment and Civil Engineering, Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, Guangdong 523808, P. R. China

^c Department of Chemistry and Institute of Molecular Functional Materials, City University of Hong Kong. Tat Chee Avenue, Kowloon Tong, Hong Kong, P. R. China

Photocatalytic CO₂ reduction is a promising approach for the conversion of solar energy into chemical fuels, providing an alternative to conventional carbon-based energy sources. Efficient solar fuel production processes relies on the design of catalysts that could be inspired by natural enzymes such as CO-dehydrogenases (CODH), which catalyze the reversible conversion of CO₂ to CO via metal cooperativity. In this spirit, we have developed a series of bimetallic quaterpyridine molecular complexes, using non noble metals including copper, nickel, and iron. These complexes exhibit high activity in the reduction of CO₂ under solar irradiation, yielding formate and CO as products with high turnover number. Likewise, the selectivity of the copper and iron catalysts can be fine-tuned to favor formate or CO, respectively. Remarkably, the bimetallic quaterpyridine complexes retain their catalytic activity over long reaction times. Our main results and the mechanism for CO₂ reduction with metal cooperativity will be discussed.

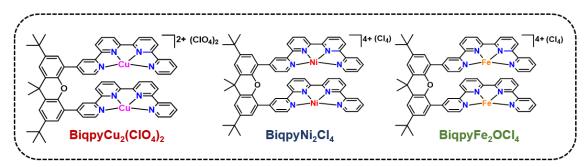


Figure 1. Structures of the Cu, Ni and Fe bimetallic quaterpyridine catalysts.

^[1] L. Chen, G. Chen, C-F. Leung, Y. Liu, M. Robert, T-C. Lau, Chem. Soc. Rev. 2020, 49, 7271-7283.

^[2] Z. Guo, C. Cometto, G. Chen, L. Chen, B. Ma, H. Fan, T. Groizard, W-L. Man, S-M. Yiu, K-C. Lau, T-C. Lau, M. Robert, *Nat. Catal.* 2019, 2, 801-808.

^[3] J. Bharti, M. Robert et al., manuscript under preparation.