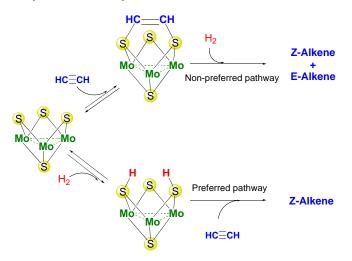
## THEORETICAL STUDY OF THE SEMIHYDROGENATION OF ALKYNES CATALYZED BY IMIDAZOLYL AMINO MOLYBDENUM CLUSTER SULFIDES

<u>Vicent S. Safont</u><sup>a</sup>, Maria Gutiérrez-Blanco<sup>a</sup>, Eva Guillamón<sup>a</sup>, Manuel G. Basallote<sup>b</sup>, M. Jesús Fernández-Trujillo<sup>b</sup>, Andrés G. Algarra<sup>b</sup> and Rosa Llusar<sup>a</sup>


> <sup>a</sup>Universitat Jaume I, Castelló, Spain <sup>b</sup>Universidad de Cádiz, Cádiz, Spain

We have recently reported a novel protocol for the semihydrogenation of alkynes using the cluster  $[Mo_3S_4Cl_3(ImNH_2)_3]^+$  (1<sup>+</sup>) and selectively affording the (Z)- alkenes with excellent yields [1]. Mechanistic control experiments suggested a sulfur-based mechanism. While the reaction with diphenylacetylene (dpa) takes place, the presence of a dithiolene  $Mo_3(\mu_3-S)(\mu-S)(\mu_3-SC(Ph)=C(Ph)S)$  (2<sup>+</sup>) adduct formed due to the bridging sulfur atoms of this cluster interacting with dpa was noticed. This adduct disappears with the time, and at the end of the reaction only 1<sup>+</sup> remains.

Herein we report a DFT-based theoretical study on the semihydrogenation of dpa catalyzed by  $\mathbf{1}^+$ . Two pathways have been explored. One of them begins with the formation of  $\mathbf{2}^+$ , followed by its hydrogenation to render an unstable intermediate ( $\mathbf{3}^+$ ) that can afford the Z-alkene. However, isomerization of  $\mathbf{3}^+$  opens additional pathways leading either to the Z- as well as the E-alkene.

The other pathway begins with the hydrogenation of two bridging sulfurs of  $\mathbf{1}^+$  obtaining a hydrogenated cluster  $\mathbf{4}^+$ , as already described by us [2]. Thereafter,  $\mathbf{4}^+$  reacts with dpa in a very smooth way, including intersystem crossings with the triplet electronic state, to render solely the Z-alkene.

Although the formation of  $2^+$  is preferred over the formation of  $4^+$ , the large energy needed to follow up from  $2^+$  prevents this pathway to take place, and the system evolves via the second pathway to selectively render the Z-alkene.



Gutiérrez-Blanco, M., Guillamón, E., Safont, V. S., Algarra, Andrés G., Fernández-Trujillo, M. J., Junge, K., Basallote, M. G., Llusar, R., Beller, M. *Inorganic Chemistry Frontiers*, 2023, 10, 1786-1794

<sup>[2]</sup> Guillamón, E., Oliva, M., Andrés, J., Pedrajas, E., Safont, V. S., Algarra, A. G., Basallote, M. G. ACS Catalysis 2021, 11, 608-614