ONE-POT SYNTHESIS OF OXIDO-AMIDATE CLUSTERS WITH TETRAHEDRAL $M_4(\mu_4-0)$ CORE FOR TRANSITION METALS

<u>Maciej Jacyna</u>^a, Piotr Krupiński^b, Michał Terlecki^a, Arkadiusz Kornowicz^b, Iwona Justyniak^b, Daniel Prochowicz^b, Jan van Leusen^c, Paul Kögerler^c and Janusz Lewiński^{a,b}

^a Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, Warsaw ^b Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44, Warsaw ^c Institute of Inorganic Chemistry, RWTH Aachen University, 52074 Aachen, Germany

Zinc μ_4 -oxido-centered complexes have been widely used as versatile precursors and building units of functional materials [1]. However, the synthesis of analogous complexes based on other transition metals is highly underdeveloped, and in our previous work, we used organometallic routes for synthesizing oxide zinc complexes [2]. In contrast, the innovative approach presented in this study utilizes an inorganic method for synthesizing homometallic [M₄(μ_4 -O)L₆]-type clusters incorporating divalent transition-metal centers coated with bridging monoanionic organic ligand. To demonstrate the effectiveness of this method, a series of charge-neutral metaloxido benzamidates, including iron(II) and cobalt(II) clusters, were prepared using this method. The resulting complexes were characterized using various analytical techniques such as: elemental analysis, SC-XRD, FTIR and magnetic measurements. The developed synthetic procedure is potentially readily adaptable to other M(II)-oxido systems, paving the way for new oxido clusters with unique optoelectronic and selfassembly properties, enabling the discovery of new functional materials that were previously unachievable [3].

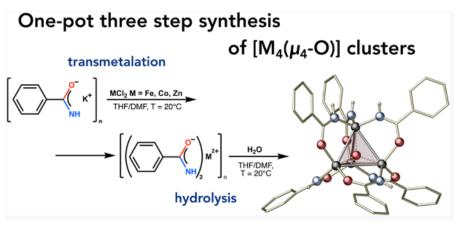


Fig.1 Scheme of the synthesis reaction of oxo-amidate complexes

^[1] J.X. Liu; X.B. Zhang; Y.L. Li; S.L. Huang; G.Y. Yang Coord. Chem. Rev. 2020, 414, 213260

^[2] W. Bury; I. Justyniak; D. Prochowicz; A. Rola-Noworyta; J. Lewiński Inorg. Chem. 2012, 51, 7410

^[3] P. Krupiński; M. Terlecki; A. Kornowicz; I. Justyniak; D. Prochowicz; J. van Leusen; P. Kögerler; J. Lewiński *Inorg. Chem.* 2022, 61, 7869