$[Re(\eta^{6}\text{-}arene)_{2}]^{+} SCAFFOLDS \text{ ARE ATTRACTIVE HOSTS FOR METAL-TERPYRIDINE CATALYSTS}$

Joshua Csucker, Henrik Braband, and Roger Alberto

Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland

We have been investigating the rich chemistry of $[\text{Re}(\eta^6\text{-arene})_2]^+$ over the recent years. These sandwich complexes are a highly stable and water-soluble alternative to ferrocene for fundamental and applied research.^[1-2] Terpyridine (terpy) complexes are well-established catalysts, building blocks of supramolecular chemistry and sensors in life sciences.^[3-4] We combined $[\text{Re}(\eta^6\text{-arene})_2]^+$ with terpy chelators to investigate how this conjugation would affect the activities of the conjugated metal-terpy complexes. Furthermore, we ask if metal-to-metal cooperativity can be induced by attaching two terpys to $[\text{Re}(\eta^6\text{-aniline})_2]^+$ followed by complexation with transition metals.

We present the mono- and bis-substituted $[\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{R})_2]^+$ (R=H or -NH-4'-terpy) conjugates. Complexation with Fe(II), Co(II), Ni(II), gave $[M[\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{R})_2)_2]^{4+}$ and with Cu(II), Rh(III) and Pt(II) the $[M[\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{R})_2]\text{Cl}_n]^{m+}$ compounds.

To assess the influence of the $[\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{R})_2]^+$ sandwiches to the native catalysts, we compared $[\text{Re}(\eta^6-\text{C}_6\text{H}_6)(\eta^6-\text{C}_6\text{H}_5-\text{NH-terpyRhCl}_3)]^+$ against $[\text{Rh}(\text{terpy})\text{Cl}_3]$ in catalytic nitroarene to aniline reduction in aqueous media and found both catalysts to perform equally well in turnover numbers and substrate scope. We observed though no cooperativity between the two {Rh(III)terpyCl}_3} entities in $[\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{NH-terpyRhCl}_3)_2]^+$ Preliminary results demonstrate that $[\text{Co}([\text{Re}(\eta^6-\text{C}_6\text{H}_5-\text{R})_2])_2]^{4+}$ are suitable water reducing catalysts in both electro- and photocatalytic systems.

We demonstrate the potential of the $[\text{Re}(\eta^6\text{-aniline})_2]^+$ scaffold as a versatile tool for the attachment of metal terpyridine complexes without compromising their activities. Along our approach, other chelators can equally well be introduced. Whether these systems facilitate metal-to-metal cooperativity is subject of further investigations.

- [3] C. Wei, Y. He, X. Shi, Z. Song, Coord. Chem. Rev. 2019, 385, 1-19.
- [4] J. Karges, K. Xiong, O. Blacque, H. Chao, G. Gasser, Inorg. Chim. Acta 2021, 516, 120137.

D. Hernández-Valdés, R. Fernández-Terán, B. Probst, B. Spingler, R. Alberto, *Helv. Chim. Acta* 2020, 103, e2000147.

^[2] D. Hernández-Valdés, F. Avignon, P. Müller, G. Meola, B. Probst, T. Fox, B. Spingler, R. Alberto, Dalton Trans. 2020, 49, 5250-5256.