
EFFECT OF REDOX INACTIVE METAL ION–NICKEL(III) INTERACTION ON THE REDOX PROPERTIES AND PROTON–COUPLED ELECTRON TRANSFER REACTIVITY

<u>Simarjeet Kaur^a</u>, Moumita Bera^a, Aakash Santra^a, Sandip Munshi^b, George E. Sterbinsky^c, Tianpin Wu^c, Dooshaye Moonshiram^d*, and Sayantan Paria^a*

^aDepartment of Chemistry, Indian Institute of Technology Delhi, New Delhi, India ^bIndian Association for the Cultivation of Science, Kolkata, India ^cX-ray Science Division, Argonne National Laboratory, Illinois, United States ^dInstituto de Ciencia de Materiales de Madrid, Madrid, Spain

High-valent nickel species are frequently invoked as key intermediates in the catalytic cycle of different enzymatic systems like [NiFe]-hydrogenase, and Ni superoxide dismutase (NiSOD).¹ Also, the coordination of Lewis acid (LA) at the secondary coordination sphere of the redox-active cofactor has an enormous effect on the reactivity.² In this regard, a mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bis-alkoxide ligand, (NMe₄)₂[Ni^{II}(HMPAB)] (1) and (NMe₄)[Ni^{III}(HMPAB)] (2), has been isolated and characterized respectively. The reaction of redox-inactive metal ions ($M^{n+} = Ca^{2+}$, Mg^{2+} , Zn^{2+} , Y^{3+} , and Sc^{3+}) with 2 resulted in 2- M^{n+} adducts, which was assessed by an array of spectroscopic techniques. The X-ray structure of Ca^{2+} coordinated to Ni(III) complexes, 2- $Ca^{2+}T$, was determined and exhibited an average Ni–Ca distance of 3.1253 Å, close to the metal ions' covalent radius. Further, the reactivity studies of 2 and 2-Mⁿ⁺ with different 4-X-2,6-di-*tert*-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and a proton-coupled electron transfer (PCET) mechanism was observed based on in-depth kinetic analysis. The second-order rate constant (k_2) values of 2-Mⁿ⁺ species with 4–OMe-2,6–DTBP increases with increasing the Lewis acidity of redox-inactive metal ions. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of metal complexes.

^[1] Barondeau, D. P.; Kassmann, C. J.; Bruns, C. K.; Tainer, J. A.; Getzoff, E. D.; *Biochemistry*, 2004, 43, 8038-8042.

^[2] Boussac, A.; Rutherford, A. W.; Biochemistry 1988, 27, 3476-3483.