
## **REACTIVITY OF THE [PCN]<sup>2-</sup> LIGAND ON LATE TRANSITION METALS**

Stefan Banz, Grégoire Le Corre, Clara Schweinzer and Hansjörg Grützmacher

Laboratory of Inorganic Chemistry, ETH Zurich, Zurich, Switzerland

Our group has recently published the synthesis of a stable  $[PCN]^{2^{-}}$  synthon, with the general formula  $[Na(18-c-6)][P(CN)(SiR_3)]$ .<sup>[1,2]</sup> The lability of the P-Si bond enables this salt to transfer  $[PCN]^{2^{-}}$  units. Indeed, in the reaction with the Rh<sup>I</sup> chloride  $[Rh_2(\mu-Cl)_2(dbcot)_2]$ , P-Si bond cleavage and elimination of *t*BuMe<sub>2</sub>SiCl was observed and a highly symmetrical Rh<sub>3</sub>P<sub>2</sub> cluster with a trigonal bipyramidal structure was obtained (Figure 1, top). Computational studies indicate that upon single electron oxidation one Rh-Rh bond is broken and the Rh<sub>3</sub>P<sub>2</sub> core opens to form an almost planar Rh<sub>2</sub>P<sub>2</sub> ring, which is capped by one Rh(dbcot) fragment. The SOMO of this intermediate is composed of the bonding interaction of the two d<sub>z</sub><sup>2</sup> orbitals at Rh and two p<sub>z</sub> orbitals at P in the Rh<sub>2</sub>P<sub>2</sub> ring, which interacts in an anti-bonding fashion with d<sub>z</sub><sup>2</sup> orbital of the capping Rh center (Figure 1, bottom left). We assume that this feature facilitates dimerization, which was indeed observed upon oxidation with [FeCp<sub>2</sub>]PF<sub>6</sub> to give a cluster with a Rh<sub>6</sub>P<sub>4</sub> core (Figure 1, bottom right). Formally one [PCN]<sup>2-</sup> ligand is converted into a P<sup>n-</sup> center under the loss of a CN moiety. The mechanism and oxidation states at the Rh and P centers are not clear, yet, but an oxidative addition of the P-CN bond onto a rhodium center might play a crucial role.



**Figure 1:** Synthesis of  $[Na(18c6)][Rh_3(PCN)_2(dbcot)_3]$  trimer (top). Calculated SOMO (BP86-D3BJ/def2-TZVP) of the oxidized  $[Rh_3(PCN)_2(dbcot)_3]$  trimer (bottom, left). Structure of the synthesized  $Rh_6P_4^+$  cluster (bottom, right).

<sup>[1]</sup> Le Corre, G.; Gamboa-Carballo, J. J.; Li, Z.; Grützmacher, H., Angew. Chem. Int. Ed. 2021, 60, 24817

<sup>[2]</sup> Le Corre, G.; Grützmacher, H., Dalton Trans., 2022, 51, 3497